LearnPick Navigation
Close

Integration (Calculus)

Published in: Mathematics
1,088 views
  • Rajendra K

    • Bangalore
    • Fresher
    • Qualification: M.Phil
    • Teaches: Mathematics, WBJEE, IIT JEE Mains, IIT JEE Advance...
  • Contact this tutor

Integration for class 12th. It covers all type of questions.

  • 1
    Notes, Formula, Points and some Techniques Basic Formula Group A 1. 2. 3. 4. 5. 6. Group B 7. 8. 9. 10. 11. 12. sinxdx = — cos x + C cos xdx = sin x + C sec xdx=tanx + C co sec xdx= —cot x sec x tan xdx = sec x co sec x cot xdx = —co sec x 11-1 xndx = e dx = a n 4-1 x a — cos(ax+ b) sin(ax + b)dx = a sin(ax + b) f cos(ax + b)dx = a tan(ax + b) see (ax + b)dx = a — cot(ax + b) cos ec2 (ax + b)dx = a sec(ax + b) sec x tan x(ax + b)dx = a —co sec(ax + b) co sec x cot x(ax + b)dx = a (ax + b)n+l f (ax + bYdx— (ax+b) (ax+b) a (bx+c) 1 a (bx+c) loge a • b 1 log(ax + b) loge a —dx = log x + C 1 -1 —dx = fldx = x + C dx = (ax + b) 1 dx = a -1 n — 1) (ax + (ax + 1 a Group C 13. 14. 15. 16. tan xdx = log sec x + C cot xdx = log sin x + C sec xdx = log(sec x + tan x) + C log sec(ax + b) tan(ax + b)dx — a log sin(ax + b) f cot(ax + b)dx = a log(sec(ax + b) + tan(ax + b)) sec(ax + b)dx — a log(co sec(ax + b) — cot(ax + b)) co secxdx = log(co sec x— cot x) +C co sec(ax + b)dx = a
  • 2
    2 Group D ex = t 17. 18 19 1 sin x + C 1 sec- x + C x x2—1 1 dx=tan x + C 2 Some Other Points 20. 21. 22. 23. 24. sin tan sec sin tan sec sin X, COS X cot x X, X, cosec x X, COS X x, cot x + X, cosec x X, COS X use half angle formula use sec x -1 and cosec x -1 direct split one odd power split two odd power split two odd power and use by parts use half angle formula twice Use following substitution a. b. c. d. f. TX = t x = t 2 dx=2tdt log x tan x = t x=et dx=etdt dt = t x = tan I t dt = dt CIX = dt a Inverse function = t if (X) [f/ (x) dx], put f (x) = t f/ (x) dx=dt There are some pair of f (x) and . f/ (x) may be with out constant. Some important pairs f(x) xe f/ (x) may be with out constant (x -k I)ex
  • 3
    3 1 4 x log(sec x + tan x) 2 cos x 25. Remove under roots by following substitution x—a x—a 26. 27. a. b. d. f. I—sin x 1 + tan sec = cos x x = sec 0 — tan 0 2 put x put x put x put x = cos 20 or x or (x—a —x) (x—a )(x dx 1 5 x 1 2 sec x sin 2x = 3 sin 0 2 = 3 tan20 2 =3sec2 0 — acos2 0+ ßsin2 0 — asec2 0 — p tan 2 0 Deg(Nr) Deg (Nr) a. b. sin x(terms sin x or cos x) dx cos x(terms cos x or sin x) put x — put x — divide by Dr. in Nr. divide and multiply by sin x divide and multiply by cos x

Discussion

Copyright Infringement: All the contents displayed here are being uploaded by our members. If an user uploaded your copyrighted material to LearnPick without your permission, please submit a Takedown Request for removal.

Need a Tutor or Coaching Class?

Post an enquiry and get instant responses from qualified and experienced tutors.

Post Requirement

Related Notes

Query submitted.

Thank you!

Drop Us a Query:

Drop Us a Query